Views bookmarking: Use case of a financial technology company
Introduction FlexTrade is a global provider of multi-asset execution and order management systems, supporting trading workflows across asset classes, venues, and strategies. Their platforms generate large volumes of highly detailed data that users rely on for day-to-day analysis and decision-making. Companies like FlexTrade operate in an environment where users need deep, flexible analysis across a wide range of dimensions: asset class, venue, strategy, region, client, trader, time, and more. Pivot tables are a natural fit for this kind of detailed, highly dimensional analysis. However, as the number of dimensions grows, teams quickly hit a trade-off: Putting all dimensions into a single widget becomes expensive to query and difficult to interpret. Creating separate widgets for every dimension (or combination of dimensions) leads to bloated dashboards, slower load times, and a poor user experience. This use case focuses on how BloX was used to solve this problem by introducing view bookmarking, a flexible way for users to switch between different slicing configurations (in this example, a set of four dimensions) within a single widget. It also highlights how BloX can be used not just for custom visualizations, but also for building small, purpose-driven mini apps directly inside a dashboard. What the solution does This solution uses BloX to manage view bookmarks for a pivot table. Instead of permanently adding all dimensions to the widget, BloX acts as a control layer that lets users select dimensions to include in the pivot at a time. Each selected combination can be saved as a view bookmark, representing a specific slicing configuration of the same underlying pivot. With this solution, users can: Select up to four dimensions to apply to the pivot table Save the selected combination as a personal bookmark Load and reuse previously saved bookmarks Delete bookmarks that are no longer needed Up to 20 bookmarks are supported out of the box, and all bookmarks are user-specific, allowing each user to maintain their own set of preferred analytical views. The solution also includes basic validation and error handling, such as preventing empty and duplicate bookmark names. From a technical perspective, BloX dynamically updates the pivot’s metadata. From a user perspective, it feels like switching views within a single widget. This keeps the analysis flexible while the dashboard structure remains simple and performant. Why it’s useful Scales to 10+ dimensions without UI overload Multi-asset trading analysis often requires exploring many dimensions, but not all at the same time. This solution allows FlexTrade users to work with 10+ dimensions while only surfacing the few that matter for the current question, resulting in less visual noise, lower cognitive load, and faster insights. Maintains dashboard performance and keeps dashboards clean and maintainable By avoiding massive pivots with every dimension enabled or dozens of near-duplicate widgets, the solution keeps queries efficient and dashboards responsive, even as analytical depth increases. One widget with dynamic views replaces an entire grid of narrowly focused widgets, resulting in dashboards that are easier to navigate, faster to load, and easier to maintain. Attachments BloX-ViewDimensionBookmarks.dash.txt (example dashboard using the Sample ECommerce cube) BloXActionsForBookmarks.zip (BloX actions' scripts) ViewsBookmarkV2-2025-12-29.json (BloX template for the view bookmark widget, also included in the .dash file above). Note: Remove the .txt extension before importing the dashboard (.dash) file. The BloX widget also includes a script that automatically populates the dropdown menus with the available dimension names and existing bookmarks based on the widget’s metadata. Here is the script: // Dropdown classes used in the BloX code const dropdownClasses = [ "dimensionDropdown", //dropdowns for selecting the four dimensions "bookmarkDropdown" // dropdown for selecting existing bookmarks ]; const valueToDisable = "Select"; // placeholder value to disable widget.on('ready', function() { dimensions = widget.metadata.panels[0].items; dimensionTitles = dimensions .map(i => i.jaql.title); // Add each dimension title to the dimension dropdowns dimensionTitles.forEach(function(title, index) { $('.dimensionDropdown', element).append( '<option value="' + (index + 1) + '">' + title + '</option>' ); }); bookmarks = widget.metadata.panels[1].items; bookmarkTitles = bookmarks .filter(i => !i.disabled) // keep only not disabled .map(i => i.jaql.title); // extract title // Add each existing bookmark title to the bookmark dropdown bookmarkTitles.forEach(function(title) { $('#bookmarkDropdown', element).append( '<option value="' + title + '">' + title + '</option>' ); }); // Disable placeholder values from selection dropdownClasses.forEach(cls => { $(`.${cls}`).each(function () { let $select = $(this); if (!$select.is("select")) { $select = $select.find("select"); } if ($select.length === 0) return; $select.find("option").first().prop("disabled", true); }); }); });64Views1like1CommentWeek over week analysis with custom fiscal year: Use case of a fuel and convenience retail operator
Introduction Week-over-week (WoW) analysis is a key part of performance tracking for fast-moving, high-traffic businesses such as convenience stores, gas stations, and car washes. For these organizations, aligning the fiscal calendar with operational cycles rather than the standard calendar year makes reporting more meaningful. In this use case, the fiscal year begins on the closest Sunday to January 1st, ensuring each year starts with a full week. This structure simplifies weekly reporting and keeps week-to-week comparisons consistent across years, which is important for tracking trends like fuel sales, store traffic, and service volumes. While nonstandard, this setup is commonly used in practice. What the Solution Does For standard, fixed calendar or fiscal years, week-over-week analysis can be achieved using the “First Month of Fiscal Calendar” and “First Day of Week” settings, along with the PASTYEAR function. However, for dynamic fiscal years that begin on a weekday closest to January 1st, these features don’t provide a usable solution, since the start date can fall in the previous or following calendar year. The solution uses the Filtered Measure certified add-on and a custom dashboard script to handle the custom fiscal year. Two year filters are added to the dashboard: one represents the selected fiscal year (user-selectable), and the other represents the prior year for comparison (locked and optionally hidden), which is automatically set with a dashboard script. The Filtered Measure plugin applies the selected-year filter to the measure for the chosen period, while the prior-year filter applies to the measure for the corresponding period in the previous year. This approach ensures that week-over-week calculations respect the custom fiscal calendar, providing accurate comparisons across equivalent weeks. Note: In this particular implementation, the fiscal years and week numbers are pre-calculated in the database and stored as numeric columns. To create a Date dimension table in your Elasticube with fiscal years starting on the first Sunday closest to January 1st, refer to the SQL example below. Why It’s Useful This solution addresses the native functional limitation by respecting the custom fiscal calendar, ensuring weekly trends are comparable across years. As a result, teams can reliably track key metrics, such as fuel sales, store traffic, and service volumes, on a true week-by-week basis, supporting better operational planning and more informed decision-making. Attachments WeekoverWeekAnalysiswithCustomFiscalYear.dash.txt (dashboard) Sample ECommerce - Custom Fiscal Year.smodel.txt (elasticube) JS Script - Automatic Update for Second Year Filter.txt (dashboard script) SQL Query - Dim Date with Custom Fiscal Year.txt (custom table SQL query) For the script to hide the second filter, refer to this BINextLevel article: Hide dashboard filters. Note: remove the .txt extension before importing the dashboard (.dash) and the Elasticube (.smodel) files.125Views1like0Comments