cancel
Showing results for 
Search instead for 
Did you mean: 
intapiuser
Community Team Member
Community Team Member
Sankey diagrams are a very easy-to-digest way to look at the flow of objects between different points. The below script takes a SQL output with these 3 columns:
  1. unique_id: the unique identifier for that entity
  2. stage_name: the name of the stage in the sankey
  3. sort: identifies the order in which the entity moved from stage to stage, e.g. a date column associated with each transition

Python 3.6 Code 
# SISENSE FOR CLOUD DATA TEAMS SANKEY TEMPLATE
# SQL output should have 3 columns:
#    1) unique_id: the unique identifier for that entity
#    2) stage_name: the name of the stage in the sankey
#    3) sort: identifies the order in which the entity moved from stage to stage, e.g. a date column associated with each transition
import pandas as pd
import numpy as np
import plotly.plotly as py
import random
import string

def dummy_stage(idx):
  rand = random.randint(0, 2)
  step = 'Step'
  step += ' ' + str(int(idx / 1000) + 1)
  step += list(string.ascii_uppercase)[rand]
  return step

community_post = ''
dummy_df = pd.DataFrame()
dummy_df['idx'] = pd.Series(range(0, 3000))
dummy_df['unique_id'] = dummy_df.apply(lambda x: x['idx'] % 1000, axis=1)
dummy_df['stage_name'] = dummy_df.apply(lambda x: dummy_stage(x['idx']), axis=1)
dummy_df['sort'] = dummy_df.apply(lambda x: int(x['idx'] / 1000), axis=1)

print(dummy_df)

DEFAULT_PLOTLY_COLORS = [
    '#1f77b4',  # muted blue
    '#ff7f0e',  # safety orange
    '#2ca02c',  # cooked asparagus green
    '#d62728',  # brick red
    '#9467bd',  # muted purple
    '#e377c2',  # raspberry yogurt pink
    '#7f7f7f',  # middle gray
    '#bcbd22',  # curry yellow-green
    '#17becf'   # blue-teal
]

def color(i):
  return DEFAULT_PLOTLY_COLORS[i % len(DEFAULT_PLOTLY_COLORS)]

def rgb_from_hex(hex):
  h = hex.lstrip('#')
  return ",".join(str((int(h[i:i+2], 16))) for i in (0, 2 ,4))

# identifies any circular references in the data
# e.g. some items go from stage A -> B, some go from B -> A. this breaks the diagram
def is_circular(df_agg, row):
  circular_reference = df_agg.query(f'prior_stage_index == {row["stage_index"]} & stage_index == {row["prior_stage_index"]}')
  if row["stage_index"] == row["prior_stage_index"]:
      return True
  if circular_reference.size == 0:
    return False
  elif circular_reference['count'].iloc[0] > row['count']:
    return True
  else:
    return False

def style_link(text, link, **settings):
  style = ';'.join([f'{key.replace("_","-")}:{settings[key]}' for key in settings])
  return f'<a href="{link}" style="{style}">{text}</a>'

def plot(df, annotation=None):
  # lowercase all columns and sorts by ascending (edited 2020-08-19)
  df.columns = [c.lower() for c in df.columns]
  df.sort_values('sort', ascending=True, inplace=True)

  # get unique stages and assign indexes
  stages = df.groupby(['stage_name']).size().reset_index()[['stage_name']]
  stages['stage_index'] = stages.index
  stages['color'] = stages.apply(lambda r: color(r['stage_index']), axis=1)

  # identify the prior stage for each record
  df['stage_index'] = df.apply(lambda r: stages.loc[stages['stage_name'] == r['stage_name']]['stage_index'].iloc[0], axis=1)
  df['prior_stage_index'] = df.groupby('unique_id').stage_index.shift()

  # only take records that have a prior stage (can't plot something on a sankey if it doesn't go anywhere)
  df = df[np.isfinite(df['prior_stage_index'])]

  # get prior stage name
  df['prior_stage_name'] = df.apply(lambda r: stages.loc[stages['stage_index'] == r['prior_stage_index']]['stage_name'].iloc[0], axis=1)
  df['prior_stage_index'] = df['prior_stage_index'].astype(int)

  # aggregate counts
  df_agg = df.groupby(['prior_stage_index', 'prior_stage_name', 'stage_index', 'stage_name']).size().reset_index(name='count')

  # remove any circular references
  df_agg['is_circular'] = df_agg.apply(lambda row: is_circular(df_agg, row), axis=1)
  df_agg = df_agg.query('is_circular == False')

  # identifies the end stages in the sankey
  priors = df_agg['prior_stage_index']
  ends = stages.query('stage_index not in @priors')

  # apply colors to each flow
  df_agg['color'] = df_agg.apply(lambda r: f'rgba({rgb_from_hex(color(r["prior_stage_index"]))},{.25 if r["stage_index"] in ends["stage_index"] else .25})', axis=1)

  data=dict(
    type='sankey',
    node=dict(
      label=stages['stage_name'],
      pad = 30,
      thickness = 5,
      color=stages['color'],
      line=dict(
        width=0
      )
    ),
    link=dict(
      source=df_agg['prior_stage_index'].astype(int)
      ,target=df_agg['stage_index']
      ,value=df_agg['count']
      ,color=df_agg['color']
    )
  )

  layout =  dict(
      font = dict(
        size = 16
      ),
      hoverlabel = dict(
          bgcolor = 'purple'
      ),
    margin=dict(
                  t=20,
                  b=50,
                  l=10,
                  r=10
                )
  )

  if annotation is not None:
    layout['annotations'] = [annotation]

  fig = dict(data=[data], layout=layout)
  periscope.plotly(fig)

try:
  plot(df)
except Exception as e:
  print(e)
  annotation = {
    'x': 0.5,
    'y': 0.5,
    'ax': 0,
    'ay': 0,
    'xref': 'paper',
    'yref': 'paper',
    'text': style_link('DUMMY<br><br><br><br>DATA<br><br><br><br>EXAMPLE', community_post, font_size='60px', font_weight='bold', color='rgba(0, 0, 0, .25)'),
    'showarrow': False,
    'textangle': -25
  }
  plot(dummy_df, annotation=annotation)
Rate this article:
Version history
Last update:
‎03-02-2023 09:36 AM
Updated by:
Contributors