Control Chart using R Integration
Problem
You want to create a Control Chart in Sisense to study how a process changes over time. A control chart always has a central line for the average, an upper line for upper control limit and a lower control limit. By comparing current data to these lines, you can draw conclusions about whether the process variation is consistent (in control) or is unpredictable.


Solution
- Install “qicharts” package in R console.
install.packages(qicharts);
- R script (Copy paste to Sisense Formula)
Center Line:
library(qicharts);
y<-c(do.call('cbind',args));
sisense_result<-qic(y,chart='i');
sisense_result$cl
y<-c(do.call('cbind',args));
sisense_result<-qic(y,chart='i');
sisense_result$cl
Upper Control Limit:
library(qicharts);
y<-c(do.call('cbind',args));
sisense_result<-qic(y,chart='i');
sisense_result$ucl
y<-c(do.call('cbind',args));
sisense_result<-qic(y,chart='i');
sisense_result$ucl
Lower Control Limit:
library(qicharts);
y<-c(do.call('cbind',args));
sisense_result<-qic(y,chart='i');
sisense_result$lcl
y<-c(do.call('cbind',args));
sisense_result<-qic(y,chart='i');
sisense_result$lcl




Discussion
Control charts, also known as Shewhart charts or process-behavior charts, in statistical process control, are tools used to determine if a manufacturing or business process is in a state of statistical control.
Updated 03-02-2023
intapiuser
Admin
Joined December 15, 2022